<A NVIDIA.

INTRODUCTION OF OPENACC FOR
DIRECTIVES-BASED GPU ACCELERATION

Jeff Larkin, NVIDIA Developer Technologies

NASA Ames Applied Modeling &
Simulation (AMS) Seminar — 21 Apr 2015

AGENDA

Accelerated Computing Basics
What are Compiler Directives?
Accelerating Applications with OpenACC
- ldentifying Available Parallelism
» Exposing Parallelism
» Optimizing Data Locality
Next Steps

ACCELERATED COMPUTING BASICS

WHAT IS ACCELERATED COMPUTING?

Application Execution
’ B\

.)
L = (-

High Data Parallelism

High Serial | S,)
Performance { ———————— }

CPU

SIMPLICITY & PERFORMANCE

Simplicity Accelerated Libraries

Little or no code change for standard libraries; high performance

Limited by what libraries are available

Compiler Directives
High Level: Based on existing languages; simple and familiar
High Level: Performance may not be optimal

Parallel Language Extensions
Expose low-level details for maximum performance

Performance Often more difficult to learn and more time consuming to impleme

CODE FOR PORTABILITY & PERFORMANCE

Libraries

~

_J

-

Directives

\

~

J

e Implement as much as possible using
portable libraries.

e Use directives to implement

portable code.

(")
Languages
- ,

e Use lower level languages
for important kernels.

WHAT ARE COMPILER DIRECTIVES?

WHAT ARE COMPILER DIRECTIVES?

int main() { Programmer inserts compiler hints.
Execution Begins on the CPU.
DataCamblibezdtiEiver atosdsPid Cloel&PU.

do serial stuff()
for(int i=0; i < BIGN; i++)
{

..compute intensive work

} NVIDIA.

do more serial stuff () ; :
— - - Data and Execution returns to the CPU.

OPENACC:
THE STANDARD FOR GPU DIRECTIVES

Simple: Easy path to accelerate compute intensive
applications

Open: Open standard that can be implemented anywhere

- Portable: Represents parallelism at a high level making it
portable to any architecture

OpenACC.

DIRECTIVES FOR ACCELERATORS

OPENACC MEMBERS AND PARTNERS

roce PGI

National Laborato ry
DIAN .
TECHNISCHE IN A Sandia
@ UNIVERSITAT \00 CSCS @ National
DRESDEN aboratories

EEEEEEEEEEEEEEEEEEEEEEE

NVIDIA

embedded a"inea P%:Io ‘epCC‘
.

ﬂ\ Lsu —'ra/\ya // ELH—

ACCELERATING APPLICATIONS WITH
OPENACC

EXAMPLE: JACOBI ITERATION

- |teratively converges to correct value (e.g. Temperature), by
computing new values at each point from the average of
neighboring points.

Common, useful algorithm

A(]’2+1) Example: Solve Laplace equation in 2D: V72 f(x,y)=0
\(1-1,])® 7@ A(i+1,])
A(1,3) -~ | A y y
o Adle+1 (5))=Alk (i1,)+ ALk ((+1,)+Adk (i j—1)+ Ak (i/+1) /4

A(1,)-1)

JACOBI ITERATION: C CODE

while (err > tol && iter < iter max)
err=0.0;

for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j]1[i+1] + A[j]1[i-1] +
A[3-1][i] + A[3+1][i]):

err = max(err, abs(Anew[j][i] - A[j]1[il));
}
}

for(int j =1; j < n-1; j++) {
for(int 1i = 1; i < m-1; i++) {
A[j]l[i] = Anew[]][i];
}
}

iter++;

[

U

) 4)
Optimize Parallelize
Loop Loops with
Performance OpenACC
/ & /
4)
Optimize
Data Locality
& /

IDENTIFY PARALLELISM

while (err > tol && iter < iter max) ({ 4 Data dep.ende.ncy
err=0.0; between iterations.

[
=

for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j]1[i-1] +
A[3-1][1] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[j]1[i])):
}
}

for(int j =1; j < n-1; j++) {
for(int i =1; i < m-1; i++) {
A[j][1i] = Anew[]j][i];
}
}

iter++;

4)

|ldentify
Available
Parallelism
U j
4)
Optimize
Loop
Performance
U /
4)
Optimize
Data Locality
& /

OPENACC DIRECTIVE SYNTAX

- C/C++

#pragma acc directive [clause [,] clause] ..]
...often followed by a structured code block

- Fortran

!Sacc directive [clause [,] clause] ..]
...often paired with a matching end directive surrounding a structured code
block:

!Sacc end directive

A Don’t forget acc

OPENACC PARALLEL LOOP DIRECTIVE

parallel - Programmer identifies a block of code containing parallelism.
Compiler generates a kernel.

loop - Programmer identifies a loop that can be parallelized within the
kernel.

NOTE: parallel & loop are often placed together
#pragma acc parallel loop
for(int 1=0; i<N; i++)

{

y[i] = a*x[i]+y[i];

PARALLELIZE WITH OPENACC

while (err > tol && iter < iter max)
err=0.0;

#pragma acc parallel loop reduction (max:err)
for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j]l[i-1] +
A[3-1][1] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[j]1[i])):
}
}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j]1[i] = Anew[]j][i]’
}

e
A

}

iter++;

BUILDING THE CODE

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40,

51,
55,

55,

58,
66,

66,

69,

Loop not fused: function call before adjacent loop
Generated vector sse code for the loop

Loop not vectorized/parallelized: potential early exits
Accelerator kernel generated

55, Max reduction generated for error

56, #pragma acc loop gang /* blockIdx.x */

58, #pragma acc loop vector(256) /* threadIdx.x */
Generating copyout (Anew([1:4094][1:4094])
Generating copyin(A[:][:])

Generating Tesla code

Loop is parallelizable

Accelerator kernel generated

67, #pragma acc loop gang /* blockIdx.x */

69, #pragma acc loop vector (256) /* threadIdx.x */
Generating copyin(Anew[1:4094][1:4094])

Generating copyout (A[1:4094][1:4094])

Generating Tesla code

Loop is parallelizable

OPENACC KERNELS DIRECTIVE

The kernels construct expresses that a region may contain

parallelism and the compiler determines what can safely be
parallelized.

#pragma acc kernels

{

for (int 1=0; i<N; i++)
{ >
x[i] = 1.0; kernel 1
y[i] = 2.0; P
}
for(int i=0; i<N; i++) R
{
y[i] = a*x[i] + yI[i]; > kernel 2
}

} -’

22

PARALLELIZE WITH OPENACC KERNELS

while (err > tol && iter < iter max) ({
err=0.0;
#pragma acc kernels

{ “'|IIIIIIIIIIIIIIIIIIIII
for(int j = 1; j < n-1; j++) {

for(int 1 = 1; i < m-1; i++) {

Anew([j][i] = 0.25 * (A[j]1[i+1] + A[j]1[i-1] +
A[3-1][1i] + A[3+1][i]);

err = max(err, abs(Anew|[]j][1] - A[j]l1I[i])):
}
}

for(int j = 1; j < n-1; j++) {
for(int 1 = 1; 1 < m-1; i++) {
A[j][i] = Anew[]][1]:

BUILDING THE CODE

$ pgcc -fast -ta=tesla -Minfo=all laplace2d.c

main:

40,

51,
55,

57,
59,

67,
69,

Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

Loop not vectorized/parallelized: potential early exits

Generating copyout (Anew([1:4094][1:4094])

Generating copyin(A[:]1[:])

Generating copyout (A[1:4094][1:4094])

Generating Tesla code

Loop is parallelizable

Loop is parallelizable

Accelerator kernel generated

57, #pragma acc loop gang /* blockIdx.y */

59, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
63, Max reduction generated for error

Loop is parallelizable

Loop is parallelizable

Accelerator kernel generated

67, #pragma acc loop gang /* blockIdx.y */

69, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

OPENACC PARALLEL LOOP VS. KERNELS

PARALLEL LOOP KERNELS

* Requires analysis by « Compiler performs parallel
programmer to ensure safe analysis and parallelizes what
parallelism it believes safe

* Will parallelize what a « Can cover larger area of code
compiler may miss with single directive

* Straightforward path from » Gives compiler additional
OpenMP leeway to optimize.

Both approaches are equally valid and can perform equally well.

A

5.00X

4.50X

4.00X

3.50X

3.00X

2.50X

2.00X

1.50X

1.00X

0.50X

0.00X

Speed-up (Higher is Better) Intel Xeon

[l il e YaYa¥a) A\
COo-£Z0J0 Vo (@

Why did OpenACC (ZH?;(;?VS”Z)
slow down here? 4.38X "
3.90X NVIDIA Tesla
K40
3.13X
1.82X
1.00X

0.85X

Single Thread 2 Threads 4 Threads CRNIGEL 8 Threads OpenACC

§ NVIDIA Visual Profiler

File View Run Help
CEHE WSy [R@|F R|(EE L
© *NewSessionl &2

=| Process "a.out" (11805)
—| Thread 3991209728
Driver API

Profiling Overhead
—| [0] Tesla K20c
—| Context 1 (CUDA)
¥ MemCpy (HtoD)
W MemCpy (DtoH)

0

= Compute AN N

vsoswmainsigpu NN I I N I N N A N
vasawmainszoou | I I N N N I N

NI . Very low Compute/

Memcpy ratio

W 5.2% main_65_gpu_red

= Streams

C@ Analysis 22 . [q) Details| & Console| [Settings

i= Results

1. CUDA Application Analysis 5 Low Compute / Memcpy Efficiency [5.075 5 /62219 s = 0.082]
2. Check Overall GPU Usage samausiatiinepediamissmenpuisiclauniivndatianauniatsiod required for \ “-
memcpy. Mor

The analysis results on the right
Compute

indicate potential problems in how 5 Low Memcpy/Compute Overlap [O ns /5073 s =

your application is taking advantage The percentage of time when memcpy is being performed in parallel
of the GPU's available compute and

11

data movement capabilities. You % Low Kernel Concurren /5072 ¢ = 0%]
should examine the information ey LOns /20755 = 0% MemOry COpy 62.25
provided with each result to The percentage of time when two kernels are bemg executed in paral —

determine if you can make changes

to your application to increase GPU Low Memcpy Throughput [83.65¢ 9 MB/s avg, for memcpys accounting f

1

EXCESSIVE DATA TRANSFERS

while (err > tol && iter < iter max)

{

err=0.0;
#pragma acc kernels

‘ | A, Anew resident on
accelerator

for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] +
A[j1[i-1] + A[F-1][i] +
A[j+11[i]);
err = max(err, abs(Anew[]j][1i] -
A[j]1[i]);

| A, Anew resident on
accelerator

IDENTIFYING DATA LOCALITY

while (err > tol && iter < iter max)
err=0.0;

#pragma acc kernels
{
for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) { Does the CPU need the data
between these loop nests?
Anew[j][i] = 0.25 * (A[j]1[i+1l] + A[j][i-1] +
A[j-1][i] + A[3+1][i])~

err = max(err, abs(Anew[]j][i] - A[]j]l[i])):
} Does the CPU need the data
between iterations of the
for(int j = 1; j < n-1; j++) { convergence loop?
for(int 1 = 1; i < m-1; i++) {
A[j]l[i] = Anew[]][1i];

}

(

&

|ldentify
Available
Parallelism

\

J

[

U

~
Optimize
Loop
Performance

J

[

U

Parallelize
Loops with
OpenACC

\

J

DEFINING DATA REGIONS

» The data construct defines a region of code in which GPU
arrays remain on the GPU and are shared among all kernels ir
that region.

#pragma acc data ~

{
#pragma acc parallel loop

> Data Region
#pragma acc parallel loop

} _

DATA CLAUSES

copy (list) Allocates memory on GPU and copies data from
host to GPU when entering region and copies
data to the host when exiting region.

copyin (1list) Allocates memory on GPU and copies data from
host to GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to
the host when exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another
containing data region.

and present or copy[in|out], present or create, deviceptr.

ARRAY SHAPING

- Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C/C++

#pragma acc data copyin(a[0O:size]) copyout(b[s/4:3*s/4])

Fortran

1Sacc data copyin(a(l:end)) copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel, or kernels

OPTIMIZE DATA LOCALIT

#pragma acc data copy(A) create (Anew)
while (err > tol && iter < iter max) ({
err=0.0;
#pragma acc kernels
{
for(int j =1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[3-1][1] + A[3+1][i]);

err = max(err, abs(Anew[]j][1i] - A[j]lI[i])) -
}
}

for(int j = 1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {

A[j]l[i] = Anew[]][i];

Copy A to/from the
accelerator only when
needed.

Create Anew as a device
temporary.

REBUILDING THE CODE

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c
main:
40, Loop not fused: function call before adjacent loop
Generated vector sse code for the loop
51, Generating copy(A[:]1[:])
Generating create(Anew[:][:])
Loop not vectorized/parallelized: potential early exits
56, Accelerator kernel generated
56, Max reduction generated for error
57, #pragma acc loop gang /* blockIdx.x */
59, #pragma acc loop vector(256) /* threadIdx.x */
56, Generating Tesla code
59, Loop is parallelizable
67, Accelerator kernel generated
68, #pragma acc loop gang /* blockIdx.x */
70, #pragma acc loop vector(256) /* threadIdx.x */
67, Generating Tesla code
70, Loop is parallelizable

VISUAL PROFILER: DATA REGION

§ NVIDIA Visual Profiler
File View Run Help

9 B ag Q@ KR IEE L Was 104ms
‘ *NewSession2 3

0 - B I

—| Process "a.out” (25815)
—| Thread 4228871936
Driver API
Profiling Overhead
= [0] Tesla K20c¢
—| Context 1 (CUDA)
¥ MemCpy (HtoD) |]
7 MemCpy (DtoH) |

=| Compute m_ main_67_gpu —AHMJA main_67_gpu |

' 55.4% main_56_gpu . main_ab_gpu | mainb gpu | [

7 44.3% main_67_gpu . main_67_gpu main_67_gpu

7 0.3% main_56_gpu_... | |

= Streams

Stream 13 m_ main_67_gpu 3 gpu main_67_gpu

Iteration 1 Iteration 2

30.00X

25.00X

20.00X

15.00X

10.00X

5.00X

0.00X

Speed-Up (Higher is Better)

Socket/Socket: ==
6.24X
- \Y W

VS.

NVIDIA Tesla K40

4.38X
3.90X
3.13X
1.00X 1.82X
Single Thread 2 Threads 4 Threads 6 Threads 8 Threads

OpenACC

OPENACC PRESENT CLAUSE

It’s sometimes necessary for a data region to
be in a different scope than the compute

region.

When this occurs, the present clause can be
used to tell the compiler data is already on
the device.

Since the declaration of A is now in a higher
scope, it’s necessary to shape A in the present
clause.

High-level data regions and the present clause
are often critical to good performance.

function main(int argc, char **argv)

{

}

{
laplace2D(A,n,m) ;
}

function laplace2D (double[N] [M] A,n,m)

{

#pragma acc data create (Anew)
while (err > tol && iter < iter max) {
err=0.0;

4)
|ldentify

Available

Parallelism
& J

4)
Parallelize

Loops with

OpenACC
U /

g D\ Watch S5195 - Advanced
OpenACC Programming on

Optimizg gputechconf.com
Data Locality

U J

NEXT STEPS

|dentify Available Parallelism

What important parts of the code have available parallelism?

Parallelize Loops

Express as much parallelism as possible and ensure you still get
correct results.

Because the compiler must be cautious about data movement,
the code will generally slow down.

Optimize Data Locality

The programmer will always know better than the compiler what
data movement is unnecessary.

Optimize Loop Performance

Don’t try to optimize a kernel that runs in a few us or ms until
you’vg eliminated the excess data motion that is taking many
Seconds.

TYPICAL PORTING EXPERIENCE
WITH OPENACC DIRECTIVES

Step 1 Step 2 Step 3 Step
Identify Available | Parallelize Loops Optimize Data OptimizZe Loops
Parallelism with OpenACC Locality

Application Speed-up

\ 4

Development Time

FOR MORE INFORMATION

> Check out http://openacc.org/

» Watch tutorials at http://www.gputechconf.com/

Share your successes at WACCPD at 5C15.

» Email me: jlarkin@nvidia.com

A NVIDIA.

FUN3D ON GPU

GPU strategies for the point_solve_5 kernel

™ e

/ // p
V4
kA4 §

d

7 r

POINT_SOLVE_5

PERFORMANCE COMPARISON

> CPU: One socket E5-2690 @ 3Ghz, 10 cores
> GPU: K40c, boost clocks, ECC off
Dataset: DPW-Wing, 1M cells

One call of point_solveb over all colors
> No transfers

1 CPU core: 300ms

10 CPU cores: 44ms

OPENACC1 - STRAIGHT FORWARD

1Sacc parallel loop private(fl, £2, £3, f4, f£5)
rhs solve : do n = start, end
[...]
istart = iam(n)
iend = iam(n+1)
do j = istart, iend
icol = jam(3j)
fl = f1 - a off(1,1,]j)*dg(1l,icol)
f2 = f2 - a off(2,1,]j)*dg(1l,icol)

[..22 lines]
f5 = £5 - a off(5,5,])*dg(5,icol)
end do

[...]
end do

OPENACC1 - A_OFF ACCESS PATTERN

PERFORMANCE COMPARISON

160

milliseconds

140
120
100
80
)

44
40
22

20
0

CPU OpenACC1 - OpenACC1 - OpenACC1 tex

OPENACC2 - REFORMULATED

ISacc parallel loop collapse(2) private (fk)
rhs solve : do n = start, end
do k =1,5
[..]
istart = iam(n)
iend = iam(n+1)
do j = istart, iend
icol = jam(j)
fk fk - a off(k,1,])*dg(1l,icol)
[... lines]
fk fk - a off(k,5,j)*dg(1l,icol)
end do
end do
dg(k,n) = fk
end do
[Split off fw/bw substitution in extra loop]

N w

OPENACC2 - A_OFF ACCESS PATTERN

160

140

120

100

80

milliseconds

60

40

20

PERFORMANCE COMPARISON

L1
141

10c
44

CPU

L1
55

OpenACC1

L2

OpenACC2 - L1

CUDA FORTRAN - ADVANTAGES

> Shared Memory: as explicitly managed cache and for cooperative
reuse

Inter thread communication in a thread block with shared memory

> Inter thread communication in a warp with __shfl() instrinsic

CUDA FORTRAN - 25 WIDE

istart = iam(n)
iend = iam(n+1)

do j = istart, iend
ftemp = ftemp - a off(k,1,j)*dg(1l,jam(]))
end do
fk = ftemp - shfl(ftemp, k+1%*5)
fk = fk - _ shfl(ftemp, k+2*5)
fk = fk - _ shfl(ftemp, k+3*5)

fk = fk - _ shfl(ftemp, k+4*5)

CUDA FORTRAN - 25 WIDE

active
done
cached

uncached

milliseconds

50

45

40

35

30

25

20

PERFORMANCE COMPARISON

44

22

-
(o <]

11.5

CPU

OpenACC1

OpenACC2

CUDA Fortran

FUN3D CONCLUSIONS

Unchanged code with OpenACC: 2.0x

Modified code with OpenACC: 2.4x, modified code runs 50%
slower on CPUs

Highly optimized CUDA version: 3.7x

Compiler options (e.g. how memory is accessed) have huge
influence on OpenACC results

Possible compromise: CUDA for few hotspots, OpenACC for
the rest

Ver%/ good OpenACC/CUDA interoperability: CUDA can use
buffers managed with OpenACC data clauses

Unsolved problem: data transfer in a partial port cause
overhead

